314 research outputs found

    Tailoring Chirp in Spin-Lasers

    Full text link
    The usefulness of semiconductor lasers is often limited by the undesired frequency modulation, or chirp, a direct consequence of the intensity modulation and carrier dependence of the refractive index in the gain medium. In spin-lasers, realized by injecting, optically or electrically, spin-polarized carriers, we elucidate paths to tailoring chirp. We provide a generalized expression for chirp in spin-lasers and introduce modulation schemes that could simultaneously eliminate chirp and enhance the bandwidth, as compared to the conventional (spin-unpolarized) lasers.Comment: 4 pages, 3 figure

    Piezomagnetic Quantum Dots

    Full text link
    We study the influence of deformations on magnetic ordering in quantum dots doped with magnetic impurities. The reduction of symmetry and the associated deformation from circular to elliptical quantum confinement lead to the formation of piezomagnetic quantum dots. The strength of elliptical deformation can be controlled by the gate voltage to change the magnitude of magnetization, at a fixed number of carriers and in the absence of applied magnetic field. We reveal a reentrant magnetic ordering with the increase of elliptical deformation and suggest that the piezomagnetic quantum dots can be used as nanoscale magnetic switches.Comment: 4 pages, 3 figure

    Equilibrium spin currents: Non-Abelian gauge invariance and color diamagnetism in condensed matter

    Full text link
    The spin-orbit (SO) interaction in condensed matter can be described in terms of a non-Abelian potential known in high-energy physics as a color field. I show that a magnetic component of this color field inevitably generates diamagnetic color currents which are just the equilibrium spin currents discussed in a condensed matter context. These dissipationless spin currents thus represent a universal property of systems with SO interaction. In semiconductors with linear SO coupling the spin currents are related to the effective non-Abelian field via Yang-Mills magnetostatics equation.Comment: RevTeX, 4 page

    Has the nonlinear Meissner effect been observed?

    Full text link
    We examine recent high-precision experimental data on the magnetic field, H{\bf H}, dependence of the penetration depth λ(H)\lambda(H) in YBa2Cu3O7δ\rm{YBa_2Cu_3O_{7-\delta}} (YBCO) for several field directions in the aba-b plane. In a new theoretical analysis that incorporates the effects of orthorhombic symmetry, we show that the data at sufficiently high magnetic fields and low temperatures are in quantitative agreement with the theoretical predictions of the nonlinear Meissner effect.Comment: 4 text pages plus 3 postscript figure

    Spin-polarized current amplification and spin injection in magnetic bipolar transistors

    Get PDF
    The magnetic bipolar transistor (MBT) is a bipolar junction transistor with an equilibrium and nonequilibrium spin (magnetization) in the emitter, base, or collector. The low-injection theory of spin-polarized transport through MBTs and of a more general case of an array of magnetic {\it p-n} junctions is developed and illustrated on several important cases. Two main physical phenomena are discussed: electrical spin injection and spin control of current amplification (magnetoamplification). It is shown that a source spin can be injected from the emitter to the collector. If the base of an MBT has an equilibrium magnetization, the spin can be injected from the base to the collector by intrinsic spin injection. The resulting spin accumulation in the collector is proportional to exp(qVbe/kBT)\exp(qV_{be}/k_BT), where qq is the proton charge, VbeV_{be} is the bias in the emitter-base junction, and kBTk_B T is the thermal energy. To control the electrical current through MBTs both the equilibrium and the nonequilibrium spin can be employed. The equilibrium spin controls the magnitude of the equilibrium electron and hole densities, thereby controlling the currents. Increasing the equilibrium spin polarization of the base (emitter) increases (decreases) the current amplification. If there is a nonequilibrium spin in the emitter, and the base or the emitter has an equilibrium spin, a spin-valve effect can lead to a giant magnetoamplification effect, where the current amplifications for the parallel and antiparallel orientations of the the equilibrium and nonequilibrium spins differ significantly. The theory is elucidated using qualitative analyses and is illustrated on an MBT example with generic materials parameters.Comment: 14 PRB-style pages, 10 figure

    Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic p-n junctions

    Get PDF
    A theory of spin-polarized transport in inhomogeneous magnetic semiconductors is developed and applied to magnetic/nonmagnetic p-n junctions. Several phenomena with possible spintronic applications are predicted, including spinvoltaic effect, spin valve effect, and giant magnetoresistance. It is demonstrated that only nonequilibrium spin can be injected across the space-charge region of a p-n junction, so that there is no spin injection (or extraction) at low bias.Comment: Minor Revisions. To appear in Phys. Rev. Let

    Spin transport in inhomogeneous magnetic fields: a proposal for Stern-Gerlach-like experiments with conduction electrons

    Full text link
    Spin dynamics in spatially inhomogeneous magnetic fields is studied within the framework of Boltzmann theory. Stern-Gerlach-like separation of spin up and spin down electrons occurs in ballistic and diffusive regimes, before spin relaxation sets in. Transient dynamics and spectral response to time-dependent inhomogeneous magnetic fields are investigated, and possible experimental observations of our findings are discussed.Comment: 7 pages, 4 figures; revised and extended version, to appear in PR

    Proposal for a phonon laser utilizing quantum-dot spin states

    Get PDF
    We propose a nanoscale realization of a phonon laser utilizing phonon-assisted spin flips in quantum dots to amplify sound. Owing to a long spin relaxation time, the device can be operated in a strong pumping regime, in which the population inversion is close to its maximal value allowed under Fermi statistics. In this regime, the threshold for stimulated emission is unaffected by spontaneous spin flips. Considering a nanowire with quantum dots defined along its length, we show that a further improvement arises from confining the phonons to one dimension, and thus reducing the number of phonon modes available for spontaneous emission. Our work calls for the development of nanowire-based, high-finesse phonon resonators. © 2013 American Physical Society.A. K. acknowledges financial support from the SPINMET Project (FP7-PEOPLE-2009-IRSES). The work was supported by the ONR, DOE-BES DESC0004890, and NSF-ECCS. X. Hu also acknowledges support by the U.S. ARO and NSF-PIF. The work of V. N. G. was supported by the Spanish Ministry of Economy and Competitiveness under Project No. FIS2011-28851-C02-02.Peer Reviewe

    Angular dependence of the penetration depth in unconventional superconductors

    Full text link
    We examine the Meissner state nonlinear electrodynamic effects on the field and angular dependence of the low temperature penetration depth, λ\lambda, of superconductors in several kinds of unconventional pairing states, with nodes or deep minima (``quasinodes'') in the energy gap. Our calculations are prompted by the fact that, for typical unconventional superconducting material parameters, the predicted size of these effects for λ\lambda exceeds the available experimental precision for this quantity by a much larger factor than for others. We obtain expressions for the nonlinear component of the penetration depth, Δλ\Delta\lambda, for different two- and three- dimensional nodal or quasinodal structures. Each case has a characteristic signature as to its dependence on the size and orientation of the applied magnetic field. This shows that Δλ\Delta\lambda measurements can be used to elucidate the nodal or quasinodal structure of the energy gap. For nodal lines we find that Δλ\Delta\lambda is linear in the applied field, while the dependence is quadratic for point nodes. For layered materials with YBa2Cu3O7δ\rm{YBa_2Cu_3O_{7-\delta}} (YBCO) type anisotropy, our results for the angular dependence of Δλ\Delta\lambda differ greatly from those for tetragonal materials and are in agreement with experiment. For the two- and three- dimensional quasinodal cases, Δλ\Delta\lambda is no longer proportional to a power of the field and the field and angular dependences are not separable, with a suppression of the overall signal as the node is filled in.Comment: 16 pages plus nine figure
    corecore